Hitachi Single-Chip Microcomputer

H8S/2148 Series H8S/2144 Series

Hardware Manual Supplementary Edition

HITACHI

ADE-602-125 Rev. 1.0 8/1/98 © Hitachi, Ltd. 1998

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- Products and product specifications may be subject to change without notice. Confirm that you
 have received the latest product standards or specifications before final design, purchase or
 use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

Contents

Secti	on 25	Electrical Characteristics	637
25.1	Absolu	te Maximum Ratings	637
25.2	DC Cha	aracteristics	638
25.3	AC Cha	aracteristics	654
	25.3.1	Clock Timing	655
	25.3.2	Control Signal Timing	657
	25.3.3	Bus Timing	659
	25.3.4	Timing of On-Chip Supporting Modules	667
25.4	A/D Co	onversion Characteristics	679
25.5	D/A Co	onversion Characteristics	681
25.6	Flash M	Iemory Characteristics	682
25.7	Usage 1	Note	684
Appe	endix F	Product Code Lineup	865

Section 25 Electrical Characteristics

25.1 Absolute Maximum Ratings

Table 25.1 lists the absolute maximum ratings. The H8S/2144 Series does not support the VCCB pin function, so $V_{CC}B$ should be read as V_{CC} in the tables for this series.

Table 25.1 Absolute Maximum Ratings

– Preliminary –

Item	Symbol	Value	Unit
Power supply voltage	V _{cc}	-0.3 to +7.0	V
Input voltage (except ports 6, 7, and A)	V_{in}	–0.3 to V_{cc} +0.3	V
Input voltage (CIN input not selected for port 6)	V_{in}	–0.3 to V_{cc} +0.3	V
Input voltage (CIN input not selected for port A)	V_{in}	–0.3 to V _{cc} B +0.3	V
Input voltage (CIN input selected for port 6)	V_{in}	–0.3 V to lower of voltages V_{cc} + 0.3 and AV_{cc} + 0.3	V
Input voltage (CIN input selected for port A)	V_{in}	–0.3 V to lower of voltages $V_{\rm cc}B$ + 0.3 and $AV_{\rm cc}$ + 0.3	V
Input voltage (port 7)	V _{in}	–0.3 to AV _{cc} + 0.3	V
Reference supply voltage	AV_{ref}	–0.3 to AV _{cc} + 0.3	V
Analog power supply voltage	AV_{cc}	-0.3 to +7.0	V
Analog input voltage	V _{AN}	–0.3 to AV _{cc} +0.3	V
Operating temperature	T _{opr}	Regular specifications: -20 to +75	°C
		Wide-range specifications: -40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution: Permanent damage to the chip may result if absolute maximum ratings are exceeded.

* A range of 0 to +75°C must be observed for flash memory programming/erasing in the F-ZTAT version.

25.2 DC Characteristics

Table 25.2 lists the DC characteristics. Permitted output current values and bus drive characteristics are shown in tables 25.3 and 25.4, respectively. The H8S/2144 Series does not support the VCCB pin function, so $V_{CC}B$ should be read as V_{CC} in the tables for this series.

Table 25.2 DC Characteristics

- Preliminary -

Conditions: $V_{CC} = 5.0 V \pm 10\%$, $V_{CC}B = 5.0 V \pm 10\%$, $AV_{CC}^{*1} = 5.0 V \pm 10\%$, $AV_{ref}^{*1} = 4.5 V$ to AV_{CC} , $V_{SS} = AV_{SS}^{*1} = 0 V$, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)

ltem			Symbol	Min	Тур	Мах	Unit	Test Conditions
	$\frac{P67 \text{ to } P60^{*^{2,}*^{6}}}{KIN15} \text{ to } \overline{KIN8}^{*^{7}},$	(1)*8	V_{T}^{-}	1.0	_	—	V	
voltage	$\overline{\text{IRQ2}}$ to $\overline{\text{IRQ0}}^{*3}$, $\overline{\text{IRQ5}}$ to $\overline{\text{IRQ3}}$		V_{T}^{+}	_	_	$\begin{array}{c} V_{cc} \times 0.7 \\ V_{cc} B \times 0.7 \end{array}$		_
			$V_{\rm T}^{^+}-V_{\rm T}^{^-}$	0.4	_	_	V	_
Input high voltage	RES, STBY, NMI, MD1, MD0	(2)	V _{IH}	$V_{cc} - 0.7$	_	V _{cc} +0.3	V	
	EXTAL	_		$V_{cc} imes 0.7$	_	V _{cc} +0.3	V	
	PA7 to PA0*7			$V_{cc}B imes 0.7$	—	V _{cc} B +0.3	V	
	Port 7	_		2.0	—	AV_{cc} +0.3	V	
	Input pins except (1) and (2) above* ⁶		_	2.0	_	V _{cc} +0.3	V	_
Input low voltage	RES, STBY, MD1, MD0	(3)	V _{IL}	-0.3	_	0.5	V	
	PA7 to PA0	-		-0.3	—	1.0	V	_
	NMI, EXTAL, input pins except (1) and (3) above		-	-0.3	_	0.8	V	_
Output high voltage	All output pins (except P97, and		V _{OH}	V _{cc} –0.5 V _{cc} B –0.5	_	—	V	I _{OH} = -200 μA
	P52)* ^{5,} * ⁸		_	3.5	_	_	V	I _{он} = –1 mA
	P97, P52* ⁴			2.5	_	_	V	$I_{OH} = -1 \text{ mA}$

- Preliminary -

 $\begin{array}{l} \mbox{Conditions: } V_{CC} = 5.0 \ V \pm 10\%, \ V_{CC}B = 5.0 \ V \pm 10\%, \ AV_{CC}{}^{*1} = 5.0 \ V \pm 10\%, \\ AV_{ref}{}^{*1} = 4.5 \ V \ to \ AV_{CC}, \ V_{SS} = AV_{SS}{}^{*1} = 0 \ V, \ T_a = -20 \ to \ +75^{\circ}C \ (regular specifications), \ T_a = -40 \ to \ +85^{\circ}C \ (wide-range specifications) \end{array}$

ltem			Symbol	Min	Тур	Max	Unit	Test Conditions
Output low voltage	All output pins (except RESO)*5		V _{ol}	_	_	0.4	V	I _{OL} = 1.6 mA
	Ports 1 to 3			_		1.0	V	I _{oL} = 10 mA
	RESO			_		0.4	V	I _{oL} = 2.6 mA
Input leakage	RES		I _{in}	_	_	10.0	μA	$V_{in} = 0.5 \text{ to}$ $V_{CC} - 0.5 \text{ V}$
current	STBY, NMI, MD1, MD0			_	_	1.0	μΑ	
	Port 7		_	_	_	1.0	μA	$V_{in} = 0.5 \text{ to}$ AV _{cc} - 0.5 V
Three-state leakage current (off state)	Ports 1 to 6 Ports 8, 9, A* ⁸ , B		I _{tsi}	_	—	1.0	μA	$V_{in} = 0.5 \text{ to} \\ V_{CC} - 0.5 \text{ V}, \\ V_{in} = 0.5 \text{ to} \\ V_{CC}B - 0.5 \text{ V}$
Input pull-up	Ports 1 to 3		- _P	50	—	300	μA	$V_{in} = 0 V$
MOS current	Ports 6, A* ⁸ , B		_	60	—	500	μA	_
Input capacitance	RES	(4)	C_{in}	—	—	80	pF	$V_{in} = 0 V$ f = 1 MHz
	NMI	-		_		50	pF	$T_a = 25^{\circ}C$
	P52, P97, P42, P86 PA7 to PA2	-		_	_	20	pF	_
	Input pins except (4) above		_	_		15	pF	_

- Preliminary -

Conditions: $V_{CC} = 5.0 V \pm 10\%$, $V_{CC}B = 5.0 V \pm 10\%$, $AV_{CC}^{*1} = 5.0 V \pm 10\%$, $AV_{ref}^{*1} = 4.5 V$ to AV_{CC} , $V_{SS} = AV_{SS}^{*1} = 0 V$, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)

ltem		Symbol	Min	Тур	Max	Unit	Test Conditions
Current dissipation*	Normal operation	I _{cc}	_	75	100	mA	f = 20 MHz, H8S/2144 Series
			_	85	120	mA	f = 20 MHz, H8S/2148 Series
	Sleep mode	_	_	60	85	mA	f = 20 MHz, H8S/2144 Series
			_	70	100	mA	f = 20 MHz, H8S/2148 Series
	Standby mode*10	_	_	0.01	5.0	μΑ	$T_a \le 50^\circ C$
			_		20.0	μΑ	50°C < T _a
Analog power	During A/D, D/A conversion	AI_{cc}	_	1.2	2.0	mA	
supply current	Idle		—	0.01	5.0	μΑ	AV _{cc} = 2.0 V to 5.5 V
Reference power	During A/D conversion	AI_{ref}	—	0.5	1.0	mA	
supply current	During A/D, D/A conversion	_	_	2.0	5.0	mA	_
	Idle	_	_	0.01	5.0	μA	AV _{ref} = 2.0 V to AV _{CC}
Analog pow	er supply voltage*1	$\mathrm{AV}_{\mathrm{cc}}$	4.5	—	5.5	V	Operating
			2.0		5.5	V	Idle/not used
RAM standb	oy voltage	V_{RAM}	2.0		_	V	

Notes: 1. Do not leave the AVCC, AV_{ref}, and AVSS pins open even if the A/D converter and D/A converter are not used.

Even if the A/D converter and D/A converter are not used, apply a value in the range 2.0 V to 5.5 V to AVCC and AV_{ref} pins by connection to the power supply (V_{cc}), or some other method. Ensure that AV_{ref} \leq AV_{cc}.

- 2. P67 to P60 include supporting module inputs multiplexed on those pins.
- 3. IRQ2 includes the ADTRG signal multiplexed on that pin.

 4. P52/SCK0/SCL0 and P97/SDA0 are NMOS push-pull outputs. An external pull-up resistor is necessary to provide high-level output from SCL0 and SDA0 (ICE = 1).

P52/SCK0 and P97 (ICE = 0) high levels are driven by NMOS.

- 5. When IICS = 0, ICE = 0, and KBIOE = 0. Low-level output when the bus drive function is selected is determined separately.
- 6. The upper limit of the port 6 applied voltage is V_{cc} + 0.3 V when CIN input is not selected, and the lower of V_{cc} + 0.3 V and AV_{cc} + 0.3 V when CIN input is selected. When a pin is in output mode, the output voltage is equivalent to the applied voltage.
- 7. The upper limit of the port A applied voltage is $V_{cc}B + 0.3$ V when CIN input is not selected, and the lower of $V_{cc}B + 0.3$ V and $AV_{cc} + 0.3$ V when CIN input is selected. When a pin is in output mode, the output voltage is equivalent to the applied voltage.
- 8. The port A characteristics depend on $V_{\rm cc}B$, and the other pins characteristics depend on $V_{\rm cc}.$
- 9. Current dissipation values are for V_H min = V_{cc} 0.5 V, V_{cc}B × 0.9, and V_{IL} max = 0.5 V with all output pins unloaded and the on-chip pull-up MOSs in the off state.
- 10. The values are for V_{_{RAM}} \le V_{_{CC}} < 4.5 V, V_{_{IH}} min = V_{_{CC}} \times 0.9, V_{_{CC}}B \times 0.9, and V_{_{IL}} max = 0.3 V.

- Preliminary -

 $\begin{array}{l} \mbox{Conditions: } V_{CC} = 4.0 \ V \ to \ 5.5 \ V^{*9}, V_{CC}B = 4.0 \ V \ to \ 5.5 \ V, \ AV_{CC}{}^{*1} = 4.0 \ V \ to \ 5.5 \ V, \\ AV_{ref}{}^{*1} = 4.0 \ V \ to \ AV_{CC}, \ V_{SS} = AV_{SS}{}^{*1} = 0 \ V, \ T_a = -20 \ to \ +75^{\circ}C^{*9} \ (regular \ specifications), \ T_a = -40 \ to \ +85^{\circ}C^{*9} \ (wide-range \ specifications) \end{array}$

Item			Symbol	Min	Тур	Мах	Unit	Test Conditions
	$\frac{P67 \text{ to } P60^{*^2, *^6}}{KIN15} \text{ to } \overline{KIN8}^{*^7},$	(1)* ⁸	V _T ⁻	1.0		_	V	V _{cc} = 4.5 V to 5.5 V,
voltage	$\overline{\text{IRQ2}}$ to $\overline{\text{IRQ0}}^{*^3}$, IRQ5 to $\overline{\text{IRQ3}}$		V_{T}^{+}	_	—	$\begin{array}{c} V_{cc} \times 0.7 \\ V_{cc} B \times 0.7 \end{array}$	V	[−] V _{cc} B = 4.5 V to 5.5 V
			$V_{T}^{+} - V_{T}^{-}$	0.4		_	V	_
			V _T ⁻	0.8	—	—	V	V _{cc} = 4.0 V to 4.5 V,
			V _T ⁺	—	—	$\begin{array}{c} V_{cc} \times 0.7 \\ V_{cc} B \times 0.7 \end{array}$	V	⁻ V _{cc} B = 4.0 V to 4.5 V
			$V_{\scriptscriptstyle T}{}^{\scriptscriptstyle +}-V_{\scriptscriptstyle T}{}^{\scriptscriptstyle -}$	0.3	—	_	V	
Input high voltage	RES, STBY, NMI, MD1, MD0	(2)	$V_{\rm IH}$	$V_{cc} - 0.7$	_	V _{cc} +0.3	V	
	EXTAL			$V_{cc} imes 0.7$		V _{cc} +0.3	V	_
	PA7 to PA0*7	-		$V_{cc}B \times 0.7$		$V_{cc}B + 0.3$	V	_
	Port 7	-		2.0	_	AV _{cc} +0.3	V	_
	Input pins except (1) and (2) above* ⁶		-	2.0	—	V _{cc} +0.3	V	_
Input low voltage	RES, STBY, MD1, MD0	(3)	V _{IL}	-0.3	—	0.5	V	
	PA7 to PA0	_		-0.3	—	1.0	V	V _{cc} B= 4.5 V to 5.5 V
				-0.3	—	0.8	V	V _{cc} B= 4.0 V to 4.5 V
	NMI, EXTAL, input pins except (1) and (3) above		-	-0.3	_	0.8	V	

- Preliminary -

 $\begin{array}{l} \text{Conditions: } V_{\text{CC}} = 4.0 \text{ V to } 5.5 \text{ V}^{*9}, V_{\text{CC}}\text{B} = 4.0 \text{ V to } 5.5 \text{ V}, \text{AV}_{\text{CC}}{}^{*1} = 4.0 \text{ V to } 5.5 \text{ V}, \\ \text{AV}_{\text{ref}}{}^{*1} = 4.0 \text{ V to } \text{AV}_{\text{CC}}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}}{}^{*1} = 0 \text{ V}, \text{T}_{\text{a}} = -20 \text{ to } +75^{\circ}\text{C}{}^{*9} \text{ (regular specifications), } \\ \text{T}_{\text{a}} = -40 \text{ to } +85^{\circ}\text{C}{}^{*9} \text{ (wide-range specifications)} \end{array}$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Output high voltage	All output pins (except P97, and P52)* ^{5, *8}	V _{OH}	V _{cc} –0.5 V _{cc} B –0.5		_	V	I _{OH} = -200 μA
			3.5		_	V	$I_{OH} = -1 \text{ mA},$ $V_{CC} =$ 4.5 V to 5.5 V, $V_{CC}B =$ 4.5 V to 5.5 V
			3.0		_	V	$I_{OH} = -1 \text{ mA},$ $V_{CC} =$ 4.0 V to 4.5 V, $V_{CC}B =$ 4.0 V to 4.5 V
	P97, P52* ⁴		2.0	_	_	V	$I_{OH} = -1 \text{ mA}$
Output low voltage	All output pins (except RESO)*5	V_{OL}	—		0.4	V	I _{oL} = 1.6 mA
	Ports 1 to 3		_	_	1.0	V	I _{oL} = 10 mA
	RESO		_	_	0.4	V	I _{oL} = 2.6 mA
Input	RES	I _{in}		—	10.0	μΑ	$V_{in} = 0.5$ to
leakage current	STBY, NMI, MD1, MD0		—	—	1.0	μA	⁻ V _{cc} – 0.5 V
	Port 7		_	—	1.0	μΑ	$V_{in} = 0.5 \text{ to}$ AV _{cc} - 0.5 V
Three-state leakage current (off state)	Ports 1 to 6 Ports 8, 9, A* ⁸ , B	I _{TSI}	_	_	1.0	μA	$\begin{split} V_{in} &= 0.5 \text{ to} \\ V_{cc} &- 0.5 \text{ V}, \\ V_{in} &= 0.5 \text{ to} \\ V_{cc} B &- 0.5 \text{ V} \end{split}$

- Preliminary -

Conditions: $V_{CC} = 4.0 \text{ V}$ to 5.5 V^{*9}, $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $AV_{CC}^{*1} = 4.0 \text{ V}$ to 5.5 V, $AV_{ref}^{*1} = 4.0 V \text{ to } AV_{CC}, V_{SS} = AV_{SS}^{*1} = 0 V, T_a = -20 \text{ to } +75^{\circ}C^{*9} \text{ (regular specifications)}, T_a = -40 \text{ to } +85^{\circ}C^{*9} \text{ (wide-range specifications)}$

ltem			Symbol	Min	Тур	Max	Unit	Test Conditions
Input pull- up current	Ports 1 to 3		—I _P	50	—	300	μΑ	$V_{in} = 0 V,$ $V_{CC} = 4.5 V to$
	Ports 6, A* ⁸ , B					60 — 500	500	
	Ports 1 to 3		_	30	_	200	μΑ	$V_{in} = 0 V,$ $V_{cc} =$ 4.0 V to 4.5 V,
	Ports 6, A ^{*8} , B		_	40	—	400	μA	[−] V _{cc} B = 4.0 V to 4.5 V
Input capacitance	RES	(4)	C _{in}	—	_	80	pF	$V_{in} = 0 V,$ f = 1 MHz,
	NMI	-	_		—	50	pF	$T_a = 25^{\circ}C$
	P52, P97, P42, P86, PA7 to PA2			_	—	20	pF	_
	Input pins except (4) above			_	—	15	pF	_
Current dis- sipation* ¹⁰	Normal operation		I _{cc}	—	65	85	mA	f = 16 MHz, H8S/2144 Series
				_	70	100	mA	f = 16 MHz, H8S/2148 Series
	Sleep mode			_	50	70	mA	f = 16 MHz, H8S/2144 Series
				_	60	85	mA	f = 16 MHz, H8S/2148 Series
	Standby mode*11		_	_	0.01	5.0	μA	$T_a \le 50^\circ C$
				_		20.0	μA	50°C < T _a

Conditions: $V_{CC} = 4.0 \text{ V}$ to 5.5 V^{*9} , $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $AV_{CC}^{*1} = 4.0 \text{ V}$ to 5.5 V, $AV_{ref}^{*1} = 4.0 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS}^{*1} = 0 \text{ V}$, $T_a = -20 \text{ to } +75^{\circ}\text{C}^{*9}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}^{*9}$ (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Analog power	During A/D, D/A conversion	AI_{cc}	—	1.2	2.0	mA	
supply current	Idle	_	_	0.01	5.0	μΑ	AV _{cc} = 2.0 V to 5.5 V
Reference power	During A/D conversion	AI_{ref}		0.5	1.0	mA	
supply current	During A/D, D/A conversion	_	_	2.0	5.0	mA	_
	Idle	_	_	0.01	5.0	μΑ	$AV_{ref} = 2.0 V$ to AV_{CC}
Analog power supply voltage*1		AV_{cc}	4.0	_	5.5	V	Operating
			2.0		5.5	V	Idle/not used
RAM standb	oy voltage	V_{RAM}	2.0	_	_	V	

Notes: 1. Do not leave the AVCC, AV_{ref}, and AVSS pins open even if the A/D converter and D/A converter are not used.

Even if the A/D converter and D/A converter are not used, apply a value in the range 2.0 V to 5.5 V to AVCC and Av_{ref} pins by connection to the power supply (V_{CC}), or some other method. Ensure that AV_{ref} \leq AV_{CC}.

- 2. P67 to P60 include supporting module inputs multiplexed on those pins.
- 3. IRQ2 includes the ADTRG signal multiplexed on that pin.
- P52/SCK0/SCL0 and P97/SDA0 are NMOS push-pull outputs. An external pull-up resistor is necessary to provide high-level output from SCL0 and SDA0 (ICE = 1).
 P52/SCK0 and P97 (ICE = 0) high levels are driven by NMOS.
- 5. When IICS = 0, ICE = 0, and KBIOE = 0. Low-level output when the bus drive function is selected is determined separately.
- 6. The upper limit of the port 6 applied voltage is V_{cc} + 0.3 V when CIN input is not selected, and the lower of V_{cc} + 0.3 V and AV_{cc} + 0.3 V when CIN input is selected. When a pin is in output mode, the output voltage is equivalent to the applied voltage.
- 7. The upper limit of the port A applied voltage is V_{cc}B + 0.3 V when CIN input is not selected, and the lower of V_{cc}B + 0.3 V and AV_{cc} + 0.3 V when CIN input is selected. When a pin is in output mode, the output voltage is equivalent to the applied voltage.
- 8. The port A characteristics depend on $V_{\rm cc}B$, and the other pins characteristics depend on $V_{\rm cc}.$
- 9. Ranges of V_{cc} = 4.5 to 5.5 V and T_a = 0 to +75°C must be observed for flash memory programming/erasing.

- 10. Current dissipation values are for V_{IH} min = V_{CC} 0.5 V, V_{CC}B 0.5 V, and V_{IL} max = 0.5 V with all output pins unloaded and the on-chip pull-up MOSs in the off state.
- 11. The values are for V_{RAM} \leq V_{CC} < 4.5 V, V_{IH} min = V_{CC} × 0.9, V_{CC}B × 0.9, and V_{IL} max = 0.3 V.

Conditions*⁹: $V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, V_{CC}B = 2.7 \text{ V to } 5.5 \text{ V}, AV_{CC}*^{1} = 2.7 \text{ V to } 5.5 \text{ V}, AV_{ref}*^{1} = 2.7 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS}*^{1} = 0 \text{ V}, T_{a} = -20 \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)}$

Item			Symbol	Min	Тур	Мах	Unit	Test Conditions		
	$\frac{P67 \text{ to } P60^{*^2,*^6}}{KIN15} \text{ to } \overline{KIN8^{*^7}},$	(1)* ⁸	V_{T}^{-}	$V_{cc} imes 0.2$	—	_	V			
voltage	$\overline{\text{IRQ2}}$ to $\overline{\text{IRQ0}}^{*^3}$, $\overline{\text{IRQ5}}$ to $\overline{\text{IRQ3}}$		V_{T}^{+}	_	_	$V_{cc} \times 0.7$ $V_{cc} B \times 0.7$	V			
			$V_{T}^{+}-V_{T}^{-}$	$V_{\text{cc}} \times 0.05$	—	_	V			
				$V_{cc}B \times 0.05$						
Input high voltage	RES, STBY, NMI, MD1, MD0	(2)	$V_{\rm IH}$	$V_{cc} imes 0.9$	_	V _{cc} +0.3	V			
	EXTAL	_		$V_{cc} imes 0.7$	—	V _{cc} +0.3	V	_		
	PA7 to PA0*7	_		$V_{cc}B \times 0.7$	—	V _{cc} B +0.3	V	_		
	Port 7	_		$V_{cc} imes 0.7$	—	AV_{cc} +0.3	V			
	Input pins except (1) and (2) above* ⁶			$V_{cc} \times 0.7$	—	V _{cc} +0.3	V			
Input low voltage	RES, STBY, MD1, MD0	(3)	V _{IL}	-0.3	—	$V_{cc} imes 0.1$	V			
	PA7 to PA0			-0.3	—	$V_{cc}B imes 0.2$	V	V _{cc} B = 2.7 V to 4.0 V		
						0.8	V	V _{cc} B = 4.0 V to 5.5 V		
	NMI, EXTAL, input pins except			_	-	-0.3	—	$V_{cc} imes 0.2$	V	V _{cc} = 2.7 V to 4.0 V
	(1) and (3) above					0.8	V	V _{cc} = 4.0 V to 5.5 V		
Output high voltage	All output pins (except P97,		$V_{\rm OH}$	$\begin{array}{c} V_{cc}-0.5\\ V_{cc}B-0.5 \end{array}$	_	—	V	I _{OH} = -200 μA		
	and P52)* ^{5,} * ⁸			$V_{cc} - 1.0$ $V_{cc}B - 1.0$	_	_	V	$I_{OH} = -1 \text{ mA}$ (V _{CC} = 2.7 V to 4.0 V, V _{CC} B = 2.7 V to 4.0 V)		
	P97, P52*4		_	1.0	_	_	V	I _{он} = –1 mA		

- Preliminary -

Conditions*⁹: $V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, V_{CC}B = 2.7 \text{ V to } 5.5 \text{ V}, AV_{CC}*^{1} = 2.7 \text{ V to } 5.5 \text{ V}, AV_{ref}*^{1} = 2.7 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS}*^{1} = 0 \text{ V}, T_{a} = -20 \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)}$

Item			Symbol	Min	Тур	Max	Unit	Test Conditions
Output low voltage	All output pins (except RESO)* ⁵	5	V_{OL}	_	_	0.4	V	I _{oL} = 0.8 mA
	Ports 1 to 3		_	_	_	1.0	V	$ I_{OL} = 5 \text{ mA} \\ (V_{CC} \le 4.0 \text{ V}), \\ I_{OL} = 10 \text{ mA} \\ (4.0 \text{ V} \le V_{CC} \le 5.5 \text{ V}) $
	RESO			_		0.4	V	I _{oL} = 0.8 mA
Input	RES		I _{in}	—	—	10.0	μΑ	$V_{in} = 0.5$ to
leakage current	STBY, NMI, MD1, MD0			_	_	1.0	μΑ	[–] V _{cc} – 0.5 V
	Port 7			_	—	1.0	μΑ	$V_{in} = 0.5 \text{ to}$ AV _{cc} - 0.5 V
Three-state leakage current (off state)	Ports 1 to 6 Ports 8, 9, A* ⁸ , B	5	I _{tsi}	_	_	1.0	μΑ	$V_{in} = 0.5 \text{ to} \\ V_{CC} - 0.5 \text{ V}, \\ V_{in} = 0.5 \text{ to} \\ V_{CC}B - 0.5 \text{ V}$
Input pull- up MOS	Ports 1 to 3		I _P	10	—	150	μΑ	$V_{in} = 0 V,$ $V_{CC} = 2.7 V to$
current	Ports 6, A* ⁸ , B		_	30	_	250	μΑ	3.6 V, V _{cc} B = 2.7 V to 3.6 V
Input capacitance	RES	(4)	C_{in}	_	—	80	pF	$V_{in} = 0 V,$ f = 1 MHz,
	NMI	-		_	_	50	pF	$T_a = 25^{\circ}C$
	P52, P97, P42, P86, PA7 to PA2	_		_	_	20	pF	_
	Input pins except (4) above			_	—	15	pF	_

Conditions^{*9}: $V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, V_{CC}B = 2.7 \text{ V to } 5.5 \text{ V}, AV_{CC}^{*1} = 2.7 \text{ V to } 5.5 \text{ V}, AV_{ref}^{*1} = 2.7 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS}^{*1} = 0 \text{ V}, T_a = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications)

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Current dis- sipation* ¹⁰	Normal operation	I _{cc}	_	45	60	mA	f = 10 MHz, H8S/2144 Series
			_	50	70	mA	f = 10 MHz, H8S/2148 Series
	Sleep mode		—	35	50	mA	f = 10 MHz, H8S/2144 Series
			—	40	60	mA	f = 10 MHz, H8S/2148 Series
	Standby mode*11	_	_	0.01	5.0	μA	$T_a \le 50^\circ C$
			—		20.0	μA	$50^{\circ}C < T_{a}$
Analog power	During A/D, D/A conversion	Al _{cc}	_	1.2	2.0	mA	
supply current	Idle		—	0.01	5.0	μΑ	AV _{cc} = 2.0 V to 5.5 V
Reference power	During A/D conversion	AI_{ref}	—	0.5	1.0	mA	
supply current	During A/D, D/A conversion	_	_	2.0	5.0	mA	_
	Idle	_	_	0.01	5.0	μA	$AV_{ref} = 2.0 V$ to AV_{CC}
Analog pow	er supply voltage*1	AV_{cc}	2.7	—	5.5	V	Operating
			2.0	—	5.5	V	Idle/not used
RAM standb	oy voltage	V_{RAM}	2.0	_	_	V	

Notes: 1. Do not leave the AVCC, AV_{ref}, and AVSS pins open even if the A/D converter and D/A converter are not used.

Even if the A/D converter and D/A converter are not used, apply a value in the range 2.0 V to 5.5 V to AVCC and AV_{ref} pins by connection to the power supply (V_{cc}), or some other method. Ensure that AV_{ref} \leq AV_{cc}.

2. P67 to P60 include supporting module inputs multiplexed on those pins.

3. IRQ2 includes the ADTRG signal multiplexed on that pin.

 P52/SCK0/SCL0 and P97/SDA0 are NMOS push-pull outputs. An external pull-up resistor is necessary to provide high-level output from SCL0 and SDA0 (ICE = 1).

P52/SCK0 and P97 (ICE = 0) high levels are driven by NMOS.

- 5. When IICS = 0, ICE = 0, and KBIOE = 0. Low-level output when the bus drive function is selected is determined separately.
- 6. The upper limit of the port 6 applied voltage is V_{cc} + 0.3 V when CIN input is not selected, and the lower of V_{cc} + 0.3 V and AV_{cc} + 0.3 V when CIN input is selected. When a pin is in output mode, the output voltage is equivalent to the applied voltage.
- 7. The upper limit of the port A applied voltage is $V_{cc}B + 0.3$ V when CIN input is not selected, and the lower of $V_{cc}B + 0.3$ V and $AV_{cc} + 0.3$ V when CIN input is selected. When a pin is in output mode, the output voltage is equivalent to the applied voltage.
- 8. The port A characteristics depend on $V_{cc}B$, and the other pins characteristics depend on V_{cc} .
- The operating supply voltage range specification for the F-ZTAT (low-voltage) version is under investigation. Ranges of V_{cc} = 3.0 to 3.6 V and Ta = 0 to +75°C are planned for flash memory programming/erasing.
- 10. Current dissipation values are for V_{IH} min = V_{CC} 0.5 V, $V_{CC}B$ 0.5 V, and V_{IL} max = 0.5 V with all output pins unloaded and the on-chip pull-up MOSs in the off state.
- 11. The values are for V_{_{RAM}} \le V_{_{CC}} < 2.7 V, V_{_{IH}} min = V_{_{CC}} \times 0.9, V_{_{CC}}B \times 0.9, and V_{_{IL}} max = 0.3 V.

Table 25.3 Permissible Output Currents

Conditions: $V_{CC} = 4.0 \text{ V}$ to 5.5 V, $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $Ta = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit
Permissible output low current (per pin)	SCL1, SCL0, SDA1, SDA0, PS2AC to PS2CC, PS2AD to PS2CD, PA7 to PA4 (bus drive function selected)	I _{OL}	_	_	20	mA
	Ports 1, 2, 3	_		—	10	mA
	RESO		_	—	3	mA
	Other output pins	_	_	—	2	mA
Permissible output low current (total)	Total of ports 1, 2, and 3	$\Sigma I_{\rm OL}$	_	—	80	mA
	Total of all output pins, including the above	_	_	_	120	mA
Permissible output high current (per pin)	All output pins	—I _{он}	—	_	2	mA
Permissible output high current (total)	Total of all output pins	$\Sigma - \mathbf{I}_{\rm OH}$	—	—	40	mA

Notes: 1. To protect chip reliability, do not exceed the output current values in table 25.3.

2. When driving a Darlington pair or LED, always insert a current-limiting resistor in the output line, as show in figures 25.1 and 25.2.

Table 25.3 Permissible Output Currents (cont)

Conditions: $V_{CC} = 2.7$ V to 5.5 V, $V_{CC}B = 2.7$ V to 5.5 V, $V_{SS} = 0$ V, $T_a = -20$ to $+75^{\circ}C$ (regular specifications)

Item		Symbol	Min	Тур	Max	Unit
Permissible output low current (per pin)	SCL1, SCL0, SDA1, SDA0, PS2AC to PS2CC, PS2AD to PS2CD, PA7 to PA4 (bus drive function selected)	I _{OL}	_	_	10	mA
	Ports 1, 2, 3		_	—	2	mA
	RESO		_	—	1	mA
	Other output pins		_	—	1	mA
Permissible output low current (total)	Total of ports 1, 2, and 3	$\Sigma I_{\rm OL}$	_	_	40	mA
	Total of all output pins, including the above	_	_	_	60	mA
Permissible output high current (per pin)	All output pins	— I _{он}	_	_	2	mA
Permissible output high current (total)	Total of all output pins	$\Sigma - \mathbf{I}_{\rm OH}$		_	30	mA

Notes: 1. To protect chip reliability, do not exceed the output current values in table 25.3.

2. When driving a Darlington pair or LED, always insert a current-limiting resistor in the output line, as show in figures 25.1 and 25.2.

Table 25.4 Bus Drive Characteristics

Conditions: $V_{CC} = 2.7$ V to 5.5 V, $V_{SS} = 0$ V, Ta = -20 to $+75^{\circ}C$

Applicable Pins: SCL1, SCL0, SDA1, SDA0 (bus drive function selected)

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Schmitt trigger input voltage	V_{T}^{-}	$V_{cc} imes 0.3$	_	—	V	V_{cc} = 2.7 V to 5.5 V
	V_{T}^{+}	_	_	$V_{cc} imes 0.7$	_	$V_{\rm CC}$ = 2.7 V to 5.5 V
	$V_{T}^{+}-V_{T}^{-}$	$V_{\text{cc}} \times 0.05$	_	_		V_{cc} = 2.7 V to 5.5 V
Input high voltage	V _{IH}	$V_{cc} imes 0.7$	—	$V_{cc} + 0.5$	V	$V_{\rm CC}$ = 2.7 V to 5.5 V
Input low voltage	V _{IL}	-0.5	—	$V_{\text{cc}} \times 0.3$	_	V_{cc} = 2.7 V to 5.5 V
Output low voltage	V_{OL}	—	—	0.5	V	$I_{_{OL}} = 16 \text{ mA},$ $V_{_{CC}} = 4.5 \text{ V to 5.5 V}$
		_	_	0.5		$I_{OL} = 8 \text{ mA}$
		_	—	0.4		I _{oL} = 3 mA
Input capacitance	\mathbf{C}_{in}	—	—	20	pF	$V_{in} = 0 V$, f = 1 MHz, T _a = 25°C
Three-state leakage current (off state)	I _{tsi}	—	_	1.0	μΑ	$V_{\rm in}$ = 0.5 to $V_{\rm CC}$ – 0.5 V
SCL, SDA output fall time	t _{of}	20 + 0.1Cb	_	250	ns	V_{cc} = 2.7 V to 5.5 V

Conditions: $V_{CC} = 2.7$ V to 5.5 V, $V_{CC}B = 2.7$ V to 5.5 V, $V_{SS} = 0$ V, Ta = -20 to $+75^{\circ}C$

Applicable Pins: PS2AC, PS2AD, PS2BC, PS2BD, PS2CC, PS2CD, PA7 to PA4 (bus drive function selected)

ltem	Symbol	Min	Тур	Max	Unit	Test Conditions
Output low voltage	V _{OL}	—	_	0.8	V	$I_{oL} = 16 \text{ mA},$ $V_{cc}B = 4.5 \text{ V to } 5.5 \text{ V}$
		_	—	0.5		I _{oL} = 8 mA
		_		0.4		I _{oL} = 3 mA

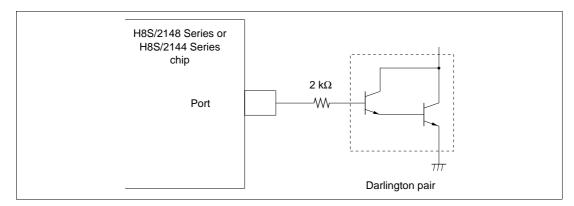


Figure 25.1 Darlington Pair Drive Circuit (Example)

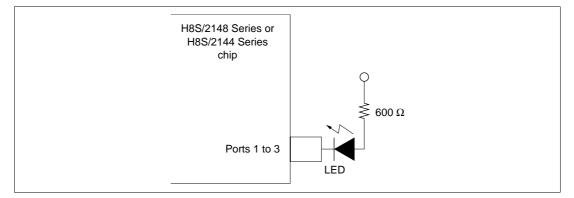


Figure 25.2 LED Drive Circuit (Example)

25.3 AC Characteristics

Figure 25.3 shows the test conditions for the AC characteristics.

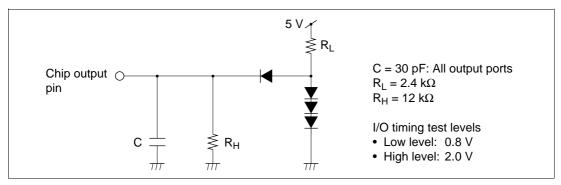
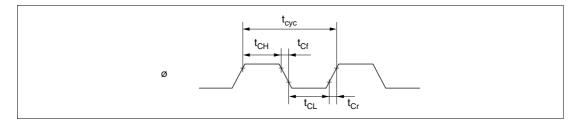
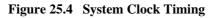


Figure 25.3 Output Load Circuit

25.3.1 Clock Timing

Table 25.5 shows the clock timing. The clock timing specified here covers clock (\emptyset) output and clock pulse generator (crystal) and external clock input (EXTAL pin) oscillation settling times. For details of external clock input (EXTAL pin and EXCL pin) timing, see section 23, Clock Pulse Generator. The H8S/2144 Series does not support the VCCB pin function, so V_{CC}B should be read as V_{CC} in the tables for this series.


Table 25.5 Clock Timing


- Preliminary -

Condition A: $V_{CC} = 5.0 V \pm 10\%$, $V_{CC}B = 5.0 V \pm 10\%$, $V_{SS} = 0 V$, $\phi = 2$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}$ C (regular specifications), $T_a = -40$ to $+85^{\circ}$ C (wide-range specifications)

- Condition B: $V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}, V_{CC}B = 4.0 \text{ V to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \phi = 2 \text{ MHz to maximum}$ operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)
- Condition C: $V_{CC} = 2.7 \text{ V}$ to 5.5V, $V_{CC}B = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20$ to $+75^{\circ}$ C (regular specifications)

		Condition A		Condition B		Condition C			
		20	MHz	16	MHz	10	MHz		Test
ltem	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Clock cycle time	t _{cyc}	50	500	62.5	500	100	500	ns	Figure 25.4
Clock high pulse width	t _{CH}	17	_	20	_	30	_	ns	Figure 25.4
Clock low pulse width	t _{CL}	17	_	20	_	30		ns	_
Clock rise time	t _{Cr}	—	8	—	10	—	20	ns	
Clock fall time	t _{cf}	—	8	—	10	—	20	ns	
Oscillation settling time at reset (crystal)	t _{osc1}	10	_	10	_	20	_	ms	Figure 25.5 Figure 25.6
Oscillation settling time in software standby (crystal)	t _{osc2}	8	—	8	—	8	—	ms	_
External clock output stabilization delay time	t _{dext}	500	_	500	_	500	_	μs	

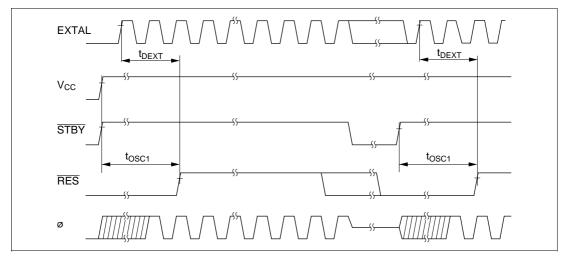


Figure 25.5 Oscillation Settling Timing

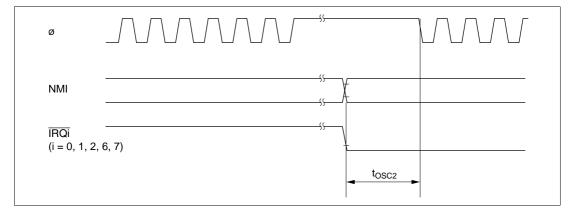


Figure 25.6 Oscillation Setting Timing (Exiting Software Standby Mode)

25.3.2 Control Signal Timing

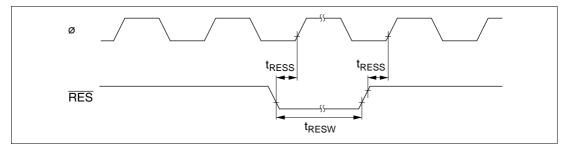

Table 25.6 shows the control signal timing. The only external interrupts that can operate on the subclock ($\phi = 32.768$ kHz) are NMI and IRQ0, 1, 2, 6, and 7.

Table 25.6 Control Signal Timing

- Preliminary -

- Condition A: $V_{CC} = 5.0 V \pm 10\%$, $V_{CC}B = 5.0 V \pm 10\%$, $V_{SS} = 0 V$, $\phi = 32.768 \text{ kHz}$, 2 MHz to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)
- Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5V, $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}$, 2 MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)
- Condition C: $V_{CC} = 2.7$ V to 5.5V, $V_{CC}B = 2.7$ V to 5.5 V, $V_{ss} = 0$ V, $\phi = 32.768$ kHz, 2 MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}$ C (regular specifications)

		Condition A		Conc	lition B	Condition C			
		20	MHz	16	MHz	10	MHz		Test
ltem	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
RES setup time	t _{RESS}	200	_	200	_	300	_	ns	Figure 25.7
RES pulse width	t _{RESW}	20	—	20	—	20	—	t _{cyc}	
NMI setup time (NMI)	t _{NMIS}	150	_	150	_	250	_	ns	Figure 25.8
NMI hold time (NMI)	t _{nmin}	10	—	10	—	10	—		_
NMI pulse width (exiting software standby mode)	t _{nmiw}	200	—	200	—	200	—	ns	_
IRQ setup time (IRQ7 to IRQ0)	t _{IRQS}	150	_	150	_	250	_	ns	_
IRQ hold time (IRQ7 to IRQ0)	t _{IRQH}	10	—	10	_	10	—	ns	_
IRQ pulse width (IRQ7, IRQ6, IRQ2 to IRQ0) (exiting software standby mode)	t _{iRQW}	200		200	_	200	_	ns	_

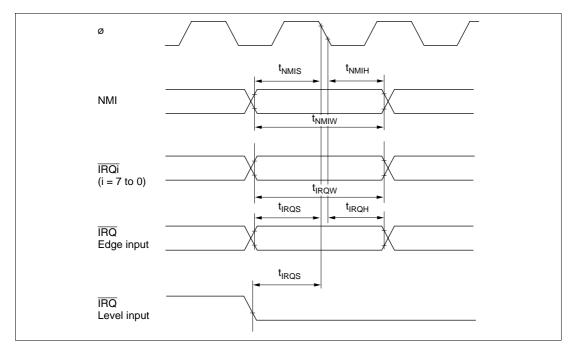


Figure 25.8 Interrupt Input Timing

25.3.3 Bus Timing

Table 25.7 shows the bus timing. Operation in external expansion mode is not guaranteed when operating on the subclock ($\phi = 32.768$ kHz).

Table 25.7 Bus Timing

- Preliminary -

- Condition A: $V_{CC} = 5.0 V \pm 10\%$, $V_{CC}B = 5.0 V \pm 10\%$, $V_{SS} = 0 V$, $\phi = 2$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}$ C (regular specifications), $T_a = -40$ to $+85^{\circ}$ C (wide-range specifications)
- Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5V, $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\emptyset = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)
- Condition C: $V_{CC} = 2.7$ V to 5.5V, $V_{CC}B = 2.7$ V to 5.5 V, $V_{SS} = 0$ V, $\phi = 2$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications)

		Cond	ition A	Condition B		Condition C			
		20	MHz	16	MHz	10 MHz		•	Test
ltem	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Address delay time	t _{AD}	_	20	_	30	_	40	ns	Figure 25.9 to
Address setup time	t _{AS}	0.5 × t _{cyc} – 15		$0.5 \times t_{cyc} - 20$)	0.5 × t _{cyc} – 30)	ns	figure 25.13
Address hold time	t _{AH}	0.5 × t _{cyc} – 10		0.5 × t _{cyc} – 15	;	0.5 × t _{cyc} – 20)	ns	-
CS delay time (IOS)	t _{CSD}	_	20	_	30	_	40	ns	-
AS delay time	t _{ASD}	_	30	_	45	_	60	ns	-
RD delay time 1	t _{RSD1}	—	30	—	45	—	60	ns	-
RD delay time 2	t _{RSD2}	_	30	—	45	_	60	ns	-
Read data setup time	t _{RDS}	15	_	20	—	35	—	ns	-
Read data hold time	t _{RDH}	0	—	0	—	0	—	ns	_

Table 25.7Bus Timing (cont)

- Preliminary -

- Condition A: $V_{CC} = 5.0 V \pm 10\%$, $V_{CC}B = 5.0 V \pm 10\%$, $V_{SS} = 0 V$, $\emptyset = 2$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)
- Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5V, $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)
- Condition C: $V_{CC} = 2.7$ V to 5.5V, $V_{CC}B = 2.7$ V to 5.5 V, $V_{SS} = 0$ V, $\phi = 2$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications)

		Cond	ition A	Cond	ition B	Cond	ition C		
		20	MHz	16	MHz	10	MHz		Test
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Read data access time 1	t _{ACC1}	_	$1.0 \times t_{cyc} - 30$	_	$1.0 imes t_{ m cyc} - 40$	_	$1.0 imes t_{ m cyc} - 60$	ns	Figure 25.9 to figure 25.13
Read data access time 2	t _{ACC2}	—	1.5 × t _{cyc} – 25	_	$1.5 \times t_{_{cyc}} - 35$	_	$1.5 \times t_{_{cyc}} - 50$	ns	_
Read data access time 3	t _{ACC3}	_	$2.0 imes t_{ m cyc} - 30$	_	$2.0 imes t_{ m cyc} - 40$	$- 2.0 \times t_{\rm cyc} - 60$		ns	_
Read data access time 4	t _{ACC4}	_	$2.5 imes t_{ m cyc} - 25$	_	$2.5 imes t_{ m cyc} - 35$	_	$2.5 imes t_{ m cyc} - 50$	ns	
Read data access time 5	t _{ACC5}	_	$3.0 imes t_{ m cyc} - 30$	_	$3.0 imes t_{ m cyc} - 40$	_	$3.0 imes t_{ m cyc} - 60$	ns	
WR delay time 1	t _{wRD1}	_	30	_	45	_	60	ns	-
WR delay time 2	t _{WRD2}	_	30	—	45	—	60	ns	-
WR pulse width 1	t _{wsw1}	1.0× t _{cyc} – 20	—	1.0 × t _{cyc} – 30		1.0× t _{cyc} – 40		ns	-
WR pulse width 2	t _{wsw2}	1.5 × t _{cyc} – 20	_	1.5 × t _{cyc} – 30	_	1.5 × t _{cyc} – 40	_	ns	

Table 25.7Bus Timing (cont)

Condition A: $V_{CC} = 5.0 V \pm 10\%$, $V_{CC}B = 5.0 V \pm 10\%$, $V_{SS} = 0 V$, $\emptyset = 2$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)

Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5V, $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20$ to $+75^{\circ}$ C (regular specifications), $T_a = -40$ to $+85^{\circ}$ C (wide-range specifications)

Condition C: $V_{CC} = 2.7$ V to 5.5V, $V_{CC}B = 2.7$ V to 5.5 V, $V_{SS} = 0$ V, $\phi = 2$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications)

		Cond	dition A	Condition B		Condition C				
		20	MHz	16 MHz		10 MHz			Test	
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions	
Write data delay time	\mathbf{t}_{WDD}	_	30	_	45	_	60	ns	Figure 25.9 to	
Write data setup time	t_{WDS}	0	—	0	—	0	—	ns	figure 25.13	
Write data hold time	\mathbf{t}_{WDH}	10	—	15	—	20	—	ns	-	
WAIT setup time	t _{wrs}	30	—	45	—	60	—	ns	-	
WAIT hold time	\mathbf{t}_{WTH}	5		5	_	10	—	ns	-	

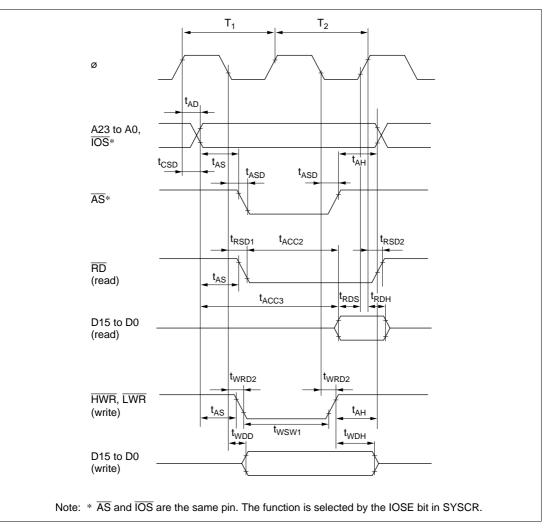


Figure 25.9 Basic Bus Timing (Two-State Access)

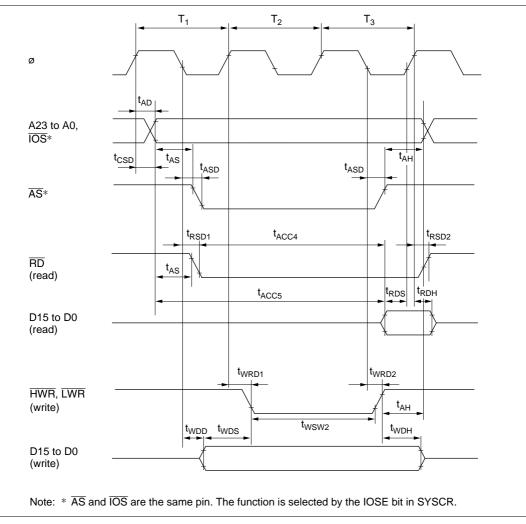


Figure 25.10 Basic Bus Timing (Three-State Access)

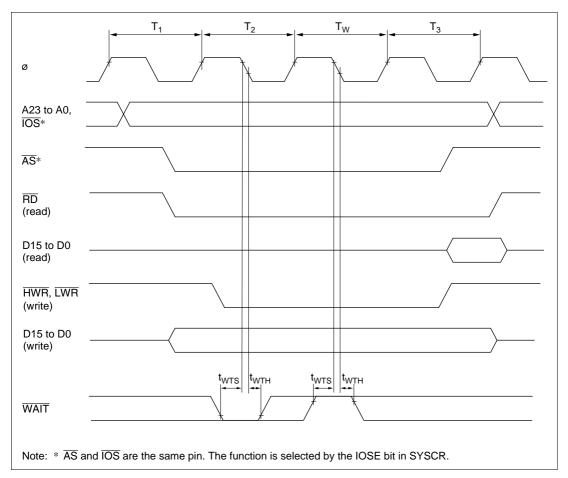


Figure 25.11 Basic Bus Timing (Three-State Access with One Wait State)

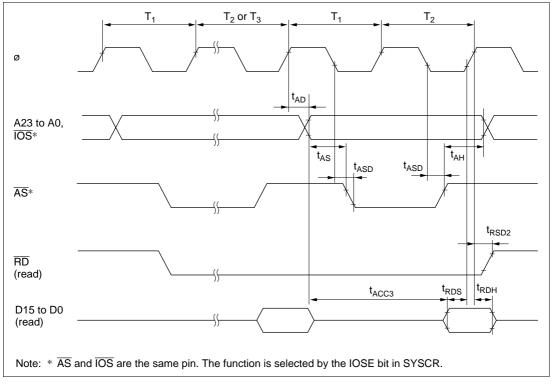


Figure 25.12 Burst ROM Access Timing (Two-State Access)

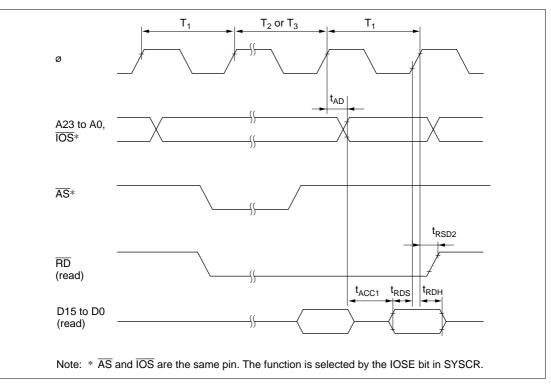


Figure 25.13 Burst ROM Access Timing (One-State Access)

25.3.4 Timing of On-Chip Supporting Modules

Tables 25.8 to 25.10 show the on-chip supporting module timing. The only on-chip supporting modules that can operate in subclock operation ($\phi = 32.768$ kHz) are the I/O ports, external interrupts (NMI and IRQ0, 1, 2, 6, and 7), the watchdog timer, and the 8-bit timer (channels 0 and 1).

Table 25.8 Timing of On-Chip Supporting Modules (1) – Preliminary –

- Condition A: $V_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{CC}B = 5.0 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}^*$, 2 MHz to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)
- Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5V, $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}^*$, 2 MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)
- Condition C: $V_{CC} = 2.7$ V to 5.5V, $V_{CC}B = 2.7$ V to 5.5 V, $V_{SS} = 0$ V, $\phi = 32.768$ kHz*, 2 MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications)

				Condition A Condition B C		Conc	dition C				
				20 MHz		16 MHz		10 MHz			Test
ltem			Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
I/O ports	Output da time	ata delay	t_{PWD}	—	50	_	50	_	100	ns	Figure 25.14
	Input dat time	a setup	t _{PRS}	30	_	30	_	50	_		
	Input data hold time		t _{PRH}	30	_	30	_	50	_		
FRT	Timer ou time	tput delay	t _{FTOD}	_	50	_	50	—	100	ns	Figure 25.15
	Timer input setup time Timer clock input setup time		t _{FTIS}	30	_	30	_	50	_		
			t _{FTCS}	30	_	30	_	50	_		Figure 25.16
	Timer clock	Single edge	t _{FTCWH}	1.5	—	1.5	—	1.5	—	t _{cyc}	-
	pulse width	Both edges	t _{FTCWL}	2.5	_	2.5	_	2.5	_		

Table 25.8 Timing of On-Chip Supporting Modules (1) (cont)

- Preliminary -

- Condition A: $V_{CC} = 5.0 V \pm 10\%$, $V_{CC}B = 5.0 V \pm 10\%$, $V_{SS} = 0 V$, $\phi = 32.768 \text{ kHz}^*$, 2 MHz to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)
- Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5V, $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}^*$, 2 MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)
- Condition C: $V_{CC} = 2.7 \text{ V}$ to 5.5V, $V_{CC}B = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}^*$, 2 MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications)

				Condition A		Cond	dition B	Condition C			
				20	MHz	16	MHz	10	10 MHz		Test
ltem			Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
TMR	Timer o delay ti		t_{TMOD}	_	50	_	50	_	100	ns	Figure 25.17
	Timer r setup ti	eset input me	t _{TMRS}	30	—	30	—	50	—		Figure 25.19
	Timer c setup ti	lock input me	t _{TMCS}	30	—	30	—	50	_		Figure 25.18
	Timer clock	Single edge	t _{TMCWH}	1.5	_	1.5	—	1.5	—	t _{cyc}	-
	pulse width	Both edges	t _{TMCWL}	2.5	—	2.5	—	2.5	_		
PWM, PWMX	Pulse c delay ti		t _{PWOD}	_	50	_	50	_	100	ns	Figure 25.20
SCI	Input clock	Asynchro- nous	t _{Scyc}	4	_	4	—	4	—	t _{cyc}	Figure 25.21
	cycle	Synchro- nous	_	6	—	6	—	6	_		
	Input clock pulse width		t _{sckw}	0.4	0.6	0.4	0.6	0.4	0.6	t _{Scyc}	-
	Input clock rise time		t _{SCKr}	—	1.5	—	1.5	—	1.5	t _{cyc}	-
	Input cl time	ock fall	t _{SCKf}	—	1.5	—	1.5	—	1.5		

Table 25.8 Timing of On-Chip Supporting Modules (1) (cont)

- Preliminary -

- Condition A: $V_{CC} = 5.0 V \pm 10\%$, $V_{CC}B = 5.0 V \pm 10\%$, $V_{SS} = 0 V$, $\phi = 32.768 \text{ kHz}^*$, 2 MHz to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)
- Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5V, $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}^*$, 2 MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)
- Condition C: $V_{CC} = 2.7 \text{ V}$ to 5.5V, $V_{CC}B = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}^*$, 2 MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications)

			Condition A Condition B		Cond	dition C				
			20	20 MHz 16 MHz		10 MHz			Test	
ltem		Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
SCI	Transmit data delay time (synchronous)	t_{TXD}	_	50	_	50	_	100	ns	Figure 25.22
	Receive data setup time (synchronous)	t _{RXS}	50	_	50	—	100	—	ns	-
	Receive data hold time (synchronous)	t _{RXH}	50	—	50	—	100	—	ns	-
A/D converter	Trigger input setup time	t _{TRGS}	30	_	30	_	50	_	ns	Figure 25.23
WDT	RESO output delay time	t _{RESD}	_	100	_	120	_	200	ns	Figure 25.24
	RESO output pulse width	t _{RESOW}	132	—	132	—	132	—	t _{cyc}	-

Note: * Only supporting modules that can be used in subclock operation

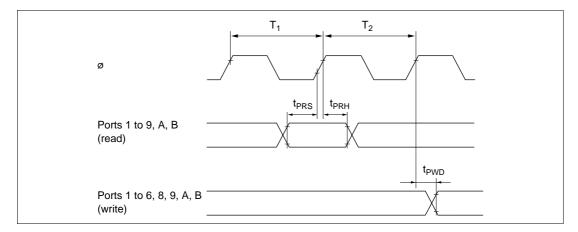


Figure 25.14 I/O Port Input/Output Timing

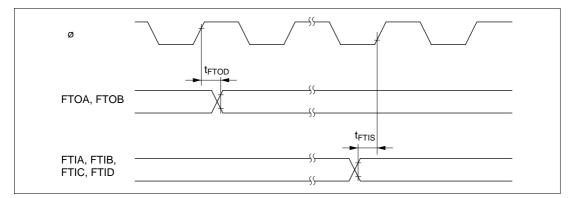


Figure 25.15 FRT Input/Output Timing

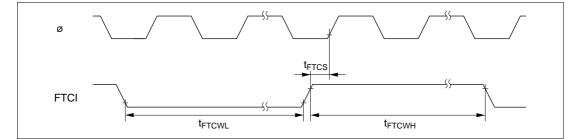
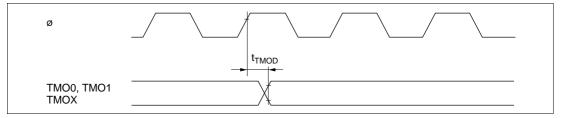



Figure 25.16 FRT Clock Input Timing

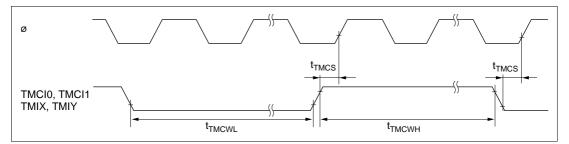


Figure 25.18 8-Bit Timer Clock Input Timing

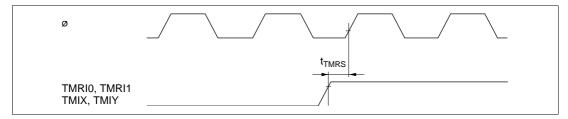


Figure 25.19 8-Bit Timer Reset Input Timing

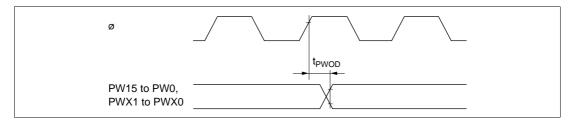
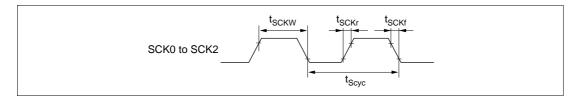



Figure 25.20 PWM, PWMX Output Timing

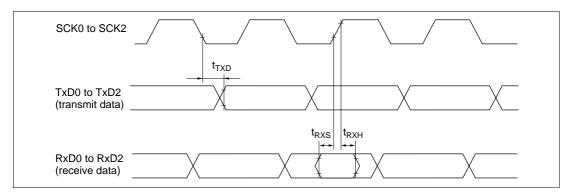


Figure 25.22 SCI Input/Output Timing (Synchronous Mode)

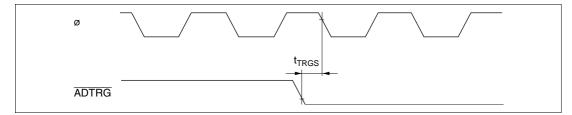


Figure 25.23 A/D Converter External Trigger Input Timing

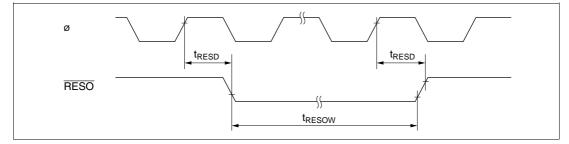
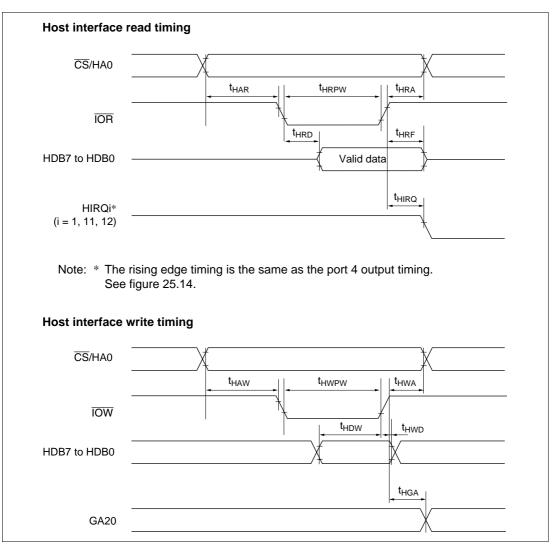



Figure 25.24 WDT Output Timing (RESO)

Table 25.8 Timing of On-Chip Supporting Modules (2)

- Condition A: $V_{CC} = 5.0 V \pm 10\%$, $V_{CC}B = 5.0 V \pm 10\%$, $V_{SS} = 0 V$, $\phi = 2$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)
- Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5V, $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20$ to $+75^{\circ}$ C (regular specifications), $T_a = -40$ to $+85^{\circ}$ C (wide-range specifications)
- Condition C: $V_{CC} = 2.7$ V to 5.5V, $V_{CC}B = 2.7$ V to 5.5 V, $V_{SS} = 0$ V, $\phi = 2$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$ (regular specifications)

				Cond	lition A	Cond	lition B	Conc	lition C		
				20	MHz	16	MHz	10 MHz			Test
ltem			Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
HIF read cycle	CS/HA item	0 setup	t _{HAR}	10	_	10	_	10	_	ns	Figure 25.25
	CS/HA	0 hold time	t _{HRA}	10	—	10	_	10	_	ns	_
	IOR pu	llse width	t _{HRPW}	120	—	120	_	220	_	ns	_
	HDB d	elay time	t _{HRD}	_	100	_	100	—	200	ns	_
	HDB h	old time	t _{HRF}	0	25	0	25	0	40	ns	_
	HIRQ	delay time	t _{HIRQ}	_	120	_	120	—	200	ns	_
HIF write cycle	CS/HA item	0 setup	t _{HAW}	10	—	10	—	10	—	ns	_
	CS/HA	0 hold time	t _{HWA}	10	_	10	_	10	_	ns	_
	IOW pu	ulse width	t _{HWPW}	60	—	60	—	100	—	ns	_
	HDB setup time	Fast A20 gate not used	t _{HDW}	30	_	30	_	50	_	ns	_
		Fast A20 gate used	_	45	_	55	_	85		ns	_
	HDB h	old time	t _{HWD}	15	—	15	—	25	—	ns	_
	GA20 0	delay time	t _{HGA}	_	90	_	90	_	180	ns	_

Table 25.9 Keyboard Buffer Controller Timing

Conditions: $V_{CC} = 2.7$ V to 5.5 V, $V_{CC}B = 2.7$ V to 5.5 V, $V_{SS} = 0$ V, $\phi = 2$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$

		R	Ratings			Test		
ltem	Symbol	Min	Тур	Max	Unit	Conditions	Notes	
KCLK, KD fall time	$t_{\rm KBF}$	20 + 0.1Cb	_	250	ns		Figure 25.26	
KCLK, KD input data hold time	t _{KBIH}	150	_	_	ns		_	
KCLK, KD input data setup time	$t_{\rm KBIS}$	150	_	_	ns		_	
KCLK, KD output delay time	$t_{\rm KBOD}$	—	—	450	ns		_	
KCLK, KD capacitive load	Cb	—	_	400	pF		_	

1.	Reception
	ø
2.	
	ø
	KCLK/ KD*
	Transmission (b)
	KCLK/ KD*
Not	 ø shown here is the clock scaled by 1/N when the operating mode is active medium-speed mode. * KCLK: PS2AC to PS2CC KD: PS2AD to PS2CD

Figure 25.26 Keyboard Buffer Controller Timing

Table 25.10 I²C Bus Timing

Conditions: $V_{CC} = 2.7$ V to 5.5 V, $V_{SS} = 0$ V, $\phi = 5$ MHz to maximum operating frequency, $T_a = -20$ to $+75^{\circ}C$

			Ratings	;			
ltem	Symbol	Min	Тур	Max	Unit	Test Conditions	Notes
SCL clock cycle time	t _{SCL}	12	—	_	t _{cyc}		Figure 25.27
SCL clock high pulse width	t _{SCLH}	3	—	—	t _{cyc}		_
SCL clock low pulse width	t _{SCLL}	5	—	_	t _{cyc}		_
SCL, SDA input rise time	t _{Sr}	—	—	7.5*	t _{cyc}		_
SCL, SDA input fall time	t _{sf}	—	—	300	ns		_
SCL, SDA input spike pulse elimination time	t _{sp}	_	_	1	t _{cyc}		_
SDA input bus free time	t _{BUF}	5	—	_	t _{cyc}		_
Start condition input hold time	t _{stah}	3	—	_	t _{cyc}		_
Retransmission start condition input setup time	t _{stas}	3	_	—	t _{cyc}		_
Stop condition input setup time	t _{stos}	3	—	—	t _{cyc}		_
Data input setup time	t _{sdas}	0.5	—	—	t _{cyc}		_
Data input hold time	t _{sdah}	0	—	—	ns		_
SCL, SDA capacitive load	C _b	_	_	400	pF		

Note: * 17.5t_{cyc} can be set according to the clock selected for use by the I²C module. For details, see section 16.4, Usage Notes.

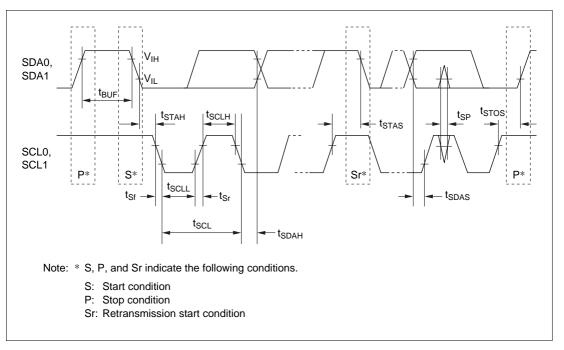


Figure 25.27 I²C Bus Interface Input/Output Timing (Option)

25.4 A/D Conversion Characteristics

Tables 25.11 and 25.12 list the A/D conversion characteristics.

Table 25.11 A/D Conversion Characteristics (AN7 to AN0 Input: 134/266-State Conversion) – Preliminary –

Condition A:	$V_{cc} = 5.0 \text{ V} \pm 10\%, \text{AV}_{cc} = 5.0 \text{ V} \pm 10\%, \text{AV}_{ref} = 4.5 \text{ V} \text{ to } \text{AV}_{cc}$
	$V_{SS} = AV_{SS} = 0$ V, $\phi = 2$ MHz to maximum operating frequency,
	$T_a = -20$ to $+75^{\circ}C$ (regular specifications),
	$T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)

 $\begin{array}{ll} \mbox{Condition B:} & V_{CC} = 4.0 \mbox{ V to } 5.5 \mbox{ V, } AV_{CC} = 4.0 \mbox{ V to } 5.5 \mbox{ V, } AV_{ref} = 4.0 \mbox{ V to } AV_{CC} \\ & V_{SS} = AV_{SS} = 0 \mbox{ V, } \phi = 2 \mbox{ MHz to maximum operating frequency,} \\ & T_a = -20 \mbox{ to } +75^{\circ}\mbox{C} \mbox{ (regular specifications),} \\ & T_a = -40 \mbox{ to } +85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$

Condition C: $V_{CC} = 2.7 \text{ V}$ to 5.5 V, $AV_{CC} = 2.7 \text{ V}$ to 5.5 V, $AV_{ref} = 2.7 \text{ V}$ to AV_{CC} $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications)

		Conditio	on A		Conditio	on B		Conditio	on C	
	20 MHz				16 MHz			10 MH	z	-
ltem	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Resolution	10	10	10	10	10	10	10	10	10	Bits
Conversion time	_	_	6.7	_	_	8.4	_	_	13.4	μs
Analog input capacitance	—	—	20	—	_	20	_	—	20	pF
Permissible signal- source	—	—	10* ³	—	—	10* ³	—	—	10* ¹	kΩ
impedance			5* ⁴	_		5* ⁴	-		5* ²	-
Nonlinearity error	—	-	±3.0	_	_	±3.0	_	-	±7.0	LSB
Offset error	—	-	±3.5	_	_	±3.5	_	-	±7.5	LSB
Full-scale error	_	_	±3.5	_	_	±3.5	_	_	±7.5	LSB
Quantization error		—	±0.5	_	—	±0.5	_	—	±0.5	LSB
Absolute accuracy	—	—	±4.0	—	—	±4.0	—	—	±8.0	LSB

Notes: 1. When 4.0 V \leq AV_{cc} \leq 5.5 V

2. When 2.7 V \leq AV_{cc} < 4.0 V

3. When conversion time \geq 11. 17 μs (CKS = 1 and ø \leq 12 MHz, or CKS = 0)

4. When conversion time < 11. 17 μ s (CKS = 1 and ϕ > 12 MHz)

Table 25.12 A/D Conversion Characteristics (CIN15 to CIN0 Input: 134/266-State Conversion)

- Preliminary -

Condition A: $V_{CC} = 5.0 \text{ V} \pm 10\%$, $AV_{CC} = 5.0 \text{ V} \pm 10\%$, $AV_{ref} = 4.5 \text{ V}$ to AV_{CC} $V_{SS} = AV_{SS} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)

Condition B: $V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}, AV_{CC} = 4.0 \text{ V to } 5.5 \text{ V}, AV_{ref} = 4.0 \text{ V to } AV_{CC}$ $V_{SS} = AV_{SS} = 0 \text{ V}, \phi = 2 \text{ MHz to maximum operating frequency},$ $T_a = -20 \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)},$ $T_a = -40 \text{ to } +85^{\circ}\text{C} \text{ (wide-range specifications)}$

Condition C: $V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, \text{AV}_{CC} = 2.7 \text{ V to } 5.5 \text{ V}, \text{AV}_{ref} = 2.7 \text{ V to } \text{AV}_{CC}$ $V_{SS} = \text{AV}_{SS} = 0 \text{ V}, \phi = 2 \text{ MHz to maximum operating frequency},$ $T_a = -20 \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)}$

		Conditic	on A		Conditic	on B		Conditio	on C		
	20 MHz				16 MH	lz		10 MHz			
Item	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
Resolution	10	10	10	10	10	10	10	10	10	Bits	
Conversion time	_	_	6.7	_	_	8.4	_	_	13.4	μs	
Analog input capacitance	_	_	20	_	_	20	_	—	20	pF	
Permissible signal- source	—	—	10* ³	—	—	10* ³	—	—	10* ¹	kΩ	
impedance			5* ⁴	-		5* ⁴	-		5* ²	-	
Nonlinearity error	_	_	±5.0	_	_	±5.0	_	_	±11.0	LSB	
Offset error	_	_	±5.5	_	_	±5.5	_	_	±11.5	LSB	
Full-scale error	_	_	±5.5	_	_	±5.5	_	_	±11.5	LSB	
Quantization error		—	±0.5	_	—	±0.5	_	_	±0.5	LSB	
Absolute accuracy	—	—	±6.0	—	—	±6.0	—	—	±12.0	LSB	

Notes: 1. When 4.0 V \leq AV_{cc} \leq 5.5 V

2. When 2.7 V \leq AV $_{cc}$ < 4.0 V

- 3. When conversion time \geq 11. 17 μs (CKS = 1 and ø \leq 12 MHz, or CKS = 0)
- 4. When conversion time < 11. 17 μ s (CKS = 1 and \emptyset > 12 MHz)

25.5 D/A Conversion Characteristics

Table 25.13 lists the D/A conversion characteristics.

Table 25.13 D/A Conversion Characteristics

 $\begin{array}{ll} \mbox{Condition A:} & V_{CC} = 5.0 \ V \pm 10\%, \ AV_{CC} = 5.0 \ V \pm 10\%, \ AV_{ref} = 4.5 \ V \ to \ AV_{CC} \\ & V_{SS} = AV_{SS} = 0 \ V, \ \phi = 2 \ MHz \ to \ maximum \ operating \ frequency, \\ & T_a = -20 \ to \ +75^\circ C \ (regular \ specifications), \\ & T_a = -40 \ to \ +85^\circ C \ (wide-range \ specifications) \end{array}$

- $\begin{array}{ll} \mbox{Condition B:} & V_{CC} = 4.0 \mbox{ V to } 5.5 \mbox{ V, } AV_{CC} = 4.0 \mbox{ V to } 5.5 \mbox{ V, } AV_{ref} = 4.0 \mbox{ V to } AV_{CC} \\ & V_{SS} = AV_{SS} = 0 \mbox{ V, } \phi = 2 \mbox{ MHz to maximum operating frequency,} \\ & T_a = -20 \mbox{ to } +75^{\circ}\mbox{C} \mbox{ (regular specifications),} \\ & T_a = -40 \mbox{ to } +85^{\circ}\mbox{C} \mbox{ (wide-range specifications)} \end{array}$
- $\begin{array}{ll} \text{Condition C:} & V_{\text{CC}} = 2.7 \text{ V to } 5.5 \text{ V}, \text{AV}_{\text{CC}} = 2.7 \text{ V to } 5.5 \text{ V}, \text{AV}_{\text{ref}} = 2.7 \text{ V to } \text{AV}_{\text{CC}} \\ & V_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, \ \text{ϕ} = 2 \text{ MHz to maximum operating frequency}, \\ & T_a = -20 \text{ to } +75^{\circ}\text{C} \text{ (regular specifications)} \end{array}$

		Condition A			C	Condition B			Condition C			
		20 MHz			16 MHz			10 MHz			-	
Item		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
Resolution		8	8	8	8	8	8	8	8	8	Bits	
Conversion time	With 20 pF load capacitance	_	_	10	—	_	10	—	_	10	μs	
Absolute accuracy	With 2 MΩ load resistance	_	±1.0	±1.5	—	±1.0	±1.5	—	±2.0	±3.0	LSB	
	With 4 MΩ load resistance	_	_	±1.0	_	-	±1.0	_	_	±2.0	-	

HITACHI

- Preliminary -

25.6 Flash Memory Characteristics

Table 25.14 shows the flash memory characteristics.

Table 25.14 Flash Memory Characteristics (5 V Version)*8

Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, $AV_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = 0 \text{ to } +75^{\circ}\text{C}$ (Programming/erasing operating temperature)

ltem	Item		Min	Тур	Max	Unit	Test Condition
Programming	time* ^{1,*2,*4}	tP	_	10	200	ms/ 32 bytes	3
Erase time* ^{1,*}	3, _* 5	tE	—	100	1200	ms/ block	
Reprogrammi	Reprogramming count		_		100	Times	
Programming	Wait time after SWE-bit setting*1	х	10	—	—	μs	
	Wait time after PSU-bit setting* ¹	У	50	—	—	μs	
	Wait time after P-bit setting* ^{1, *4}	Z	150	—	200	μs	
	Wait time after P-bit clear*1	α	10	—	—	μs	
	Wait time after PSU-bit clear ^{*1}	β	10	—	_	μs	
	Wait time after PV-bit setting* ¹	γ	4	—	_	μs	
	Wait time after dummy write*1	8	2	—		μs	
	Wait time after PV-bit clear* ¹	η	4	_		μs	
	Maximum programming count ^{*1,*4,*5}	N	_	_	1000	Times	tP = 200 μs

Table 25.14 Flash Memory Characteristics (5 V Version)*⁸ (cont)

Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, $AV_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = 0 \text{ to } +75^{\circ}\text{C}$ (Programming/erasing operating temperature)

Item		Symbol	Min	Тур	Max	Unit	Test Condition
Erase	Wait time after SWE-bit setting* ¹	х	10	—	—	μs	
	Wait time after ESU-bit setting* ¹	У	200	—	—	μs	
	Wait time after E-bit setting* ^{1.} * ⁶	Z	5	—	10	ms	
	Wait time after E-bit clear* ¹	α	10	—	—	μs	
	Wait time after ESU-bit clear* ¹	β	10	—	—	μs	
	Wait time after EV-bit setting* ¹	γ	20	—	—	μs	
	Wait time after dummy write*1	ε	2	—	—	μs	
	Wait time after EV-bit clear* ¹	η	5	—	—	μs	
	Maximum erase count* ^{1,*6,*7}	N	_	—	120	Times	tE = 10 ms

- Notes: 1. Set the times according to the program/erase algorithms.
 - 2. Programming time per 32 bytes (Shows the total time the flash memory control register (FLMCR1) is set. It does not include the programming verification time.)
 - 3. Block erase time (Shows the total period for which the E-bit in FLMCR1 is set. It does not include the erase verification time.)
 - Maximum programming time (tP (max) = wait time after P-bit setting (z) × maximum programming count (N))
 - Number of times when the wait time after P-bit setting (z) = 200 μs. The number of writes should be set according to the actual set value of z to allow programming within the maximum programming time (tP).
 - Maximum erase time (tE (max) = Wait time after E-bit setting (z) × maximum erase count (N))
 - Number of times when the wait time after E-bit setting (z) = 10 ms.
 The number of erases should be set according to the actual set value of z to allow erasing within the maximum erase time (tE).
 - 8. Low-voltage version flash memory characteristics will be decided later.

25.7 Usage Note

The F-ZTAT and mask ROM versions have been confirmed as fully meeting the reference values for electrical characteristics shown in this manual. However, actual performance figures, operating margins, noise margins, and other properties may vary due to differences in the manufacturing process, on-chip ROM, layout patterns, etc.

When system evaluation testing is carried out using the F-ZTAT version, the same evaluation tests should also be conducted for the mask ROM version when changing over to that version.

Appendix F Product Code Lineup

Table F.1 H8S/2148 Series and H8S/2144 Series Product Code Lineup — Preliminary

Product T	уре			Product Code	Mark Code	Package (Hitachi Package Code)	Notes	
H8S/2148 Series	H8S/2148	Mask ROM version	Standard product (5 V version, 4 V version,	HD6432148	HD6432148(***)FA	100-pin FP (FP-100B)	In planning stage	
			3 V version)		HD6432148(***)TE	100-pin TFP (TFP-100B)	_	
		Version with on-chip I ² C bus interface	HD6432148W	HD6432148W(***)FA	100-pin FP (FP-100B)	_		
		(5 V version, 4 V version, 3 V version)		HD6432148W(***)TE	100-pin TFP (TFP-100B)			
	F-ZTAT version	Standard product (5 V/4 V version)	HD64F2148	HD64F2148FA20	100-pin FP (FP-100B)	Under development		
					HD64F2148TE20	100-pin TFP (TFP-100B)		
			Low-voltage version (3 V version)	HD64F2148V	HD64F2148VFA10	100-pin FP (FP-100B)	Under development	
					HD64F2148VTE10	100-pin TFP (TFP-100B)		
	H8S/2147	Mask ROM version	(5 V version, 4 V version,	HD6432147	HD6432147(***)FA	100-pin FP (FP-100B)	In planning stage	
			3 V version)		HD6432147(***)TE	100-pin TFP (TFP-100B)	_	
			Version with on-chip I ² C bus interface	HD6432147W	HD6432147W(***)FA	100-pin FP (FP-100B)		
			(5 V version, 4 V version, 3 V version)		HD6432147W(***)TE	100-pin TFP (TFP-100B)		

Table F.1 H8S/2148 Series and H8S/2144 Series Product Code Lineup (cont)

- Preliminary -

Product T	уре			Product Code	Mark Code	Package (Hitachi Package Code)	Notes
H8S/2144 Series	H8S/2144	Mask ROM version	Standard product (5 V version, 4 V version,	HD6432144	HD6432144(***)FA	100-pin QFP (FP-100B)	In planning stage
			3 V version)		HD6432144(***)TE	100-pin TQFP (TFP-100B)	-
		F-ZTAT version	Standard product (5 V/4 V version)	HD64F2144	HD64F2144FA20	100-pin QFP (FP-100B)	
					HD64F2144TE20	100-pin TQFP (TFP-100B)	-
			Low-voltage version (3 V version)	HD64F2144V	HD64F2144VFA10	100-pin QFP (FP-100B)	Under development
					HD64F2144VTE10	100-pin TQFP (TFP-100B)	-
	H8S/2143	Mask ROM version	Standard product (5 V version, 4 V version,	HD6432143	HD6432143(***)FA	100-pin QFP (FP-100B)	In planning stage
			3 V version)		HD6432143(***)TE	100-pin TQFP (TFP-100B)	-
	H8S/2142	Mask ROM version	Standard product (5 V version, 4 V version,	HD6432142	HD6432142(***)FA	100-pin QFP (FP-100B)	Under development
			3 V version)		HD6432142(***)TE	100-pin TQFP (TFP-100B)	-
		F-ZTAT version	Standard product (5 V/4 V version)	HD64F2142	HD64F2142FA20	100-pin QFP (FP-100B)	
					HD64F2142TE20	100-pin TQFP (TFP-100B)	-
			Low-voltage version (3 V version)	HD64F2142V	HD64F2142VFA10	100-pin QFP (FP-100B)	Under development
					HD64F2142VTE10	100-pin TQFP (TFP-100B)	

Note: (***) is the ROM code.

The F-ZTAT version of the H8S/2148 has an on-chip I^2C bus interface as standard.

The F-ZTAT 5 V/4 V version supports the operating ranges of the 5 V version and the 4 V version.

The operating range of the F-ZTAT low-voltage version will be decided later.

The above table includes products in the planning stage or under development. Information on the status of individual products can be obtained from Hitachi's sales offices.

H8S/2148 Series and H8S/2144 Series Hardware Manual Supplementary Edition

	-
Publication Date:	1st Edition, August 1998
Published by:	Electronic Devices Sales & Marketing Group
	Hitachi, Ltd.
Edited by:	Technical Documentation Group
	UL Media Co., Ltd.
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.	